10 resultados para SEASONAL DYNAMICS

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the years 2002, 2003 and 2004 we collected samples of macroinvertebrates on a total of 36 occasions in Badacsony bay, in areas of open water (in the years 2003 and 2004 reed-grassy) as well as populated by reed (Phragmites australis) and cattail (Typha angustifolia). Samples were taken using a stiff hand net. The sampling site includes three microhabitats differentiated only by the aquatic plants inhabiting these areas. Our data was gathered from processing 208 individual samples. The quantity of macroinvertebrates is represented by biovolume value based on volume estimates. We can identify taxa in abundant numbers found in all water types and ooze; as well as groups associated with individual microhabitats with various aquatic plants. We can observe a notable difference between the years in the volume of invertebrate macrofauna caused by the drop of water level, and the multiplication of submerged macrophytes. There are smaller differences between the samples taken in reeds and cattail stands. In the second half of 2003 – which was a year of drought – the Najas marina appeared in open waters and allowed to support larger quantities of macroinvertebrates. In 2004 with higher water levels, the Potamogeton perfoliatus occurring in the same area has had an even more significant effect. This type of reed-grass may support the most macroinvertebrates during the summer. From the aspect of diversity relations we may suspect different characteristics. The reeds sampling site proved to be the richest, while the cattail microhabitat is close behind, open water (with submerged macrophytes) is the least diverse microhabitat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2002, 2003 and 2004, we took macoinvertebrate samples on a total of 36 occasions at the Badacsony bay of Lake Balaton. Our sampling site was characterised by areas of open water (in 2003 and 2004 full of reed-grass) as well as by areas covered by common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia). Samples were taken both from water body and benthic ooze by use of a stiff hand net. We have gained our data from processing 208 individual samples. We took samples frequently from early spring until late autumn for a deeper understanding of the processes of seasonal dynamics. The main seasonal patterns and temporal changes of diversity were described. We constructed a weather-dependent simulation model of the processes of seasonal dynamics in the interest of a possible further utilization of our data in climate change research. We described the total number of individuals, biovolume and diversity of all macroinvertebrate species with a single index and used the temporal trends of this index for simulation modelling. Our discrete deterministic model includes only the impact of temperature, other interactions might only appear concealed. Running the model for different climate change scenarios it became possible to estimate conditions for the 2070-2100 period. The results, however, should be treated very prudently not only because our model is very simple but also because the scenarios are the results of different models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is one of the most crucial ecological problems of our age with great influence. Seasonal dynamics of aquatic communities are — among others — regulated by the climate, especially by temperature. In this case study we attempted the simulation modelling of the seasonal dynamics of a copepod species, Cyclops vicinus, which ranks among the zooplankton community, based on a quantitative database containing ten years of data from the Danube’s Göd area. We set up a simulation model predicting the abundance of Cyclops vicinus by considering only temperature as it affects the abundance of population. The model was adapted to eight years of daily temperature data observed between 1981 and 1994 and was tested successfully with the additional data of two further years. The model was run with the data series of climate change scenarios specified for the period around 2070- 2100. On the other hand we looked for the geographically analogous areas with the Göd region which are mostly similar to the future climate of the Göd area. By means of the above-mentioned points we can get a view how the climate of the region will change by the end of the 21st century, and the way the seasonal dynamics of a chosen planktonic crustacean species may follow this change. According to our results the area of Göd will be similar to the northern region of Greece. The maximum abundance of the examined species occurs a month to one and a half months earlier, moreover larger variances are expected between years in respect of the abundance. The deviations are expected in the direction of smaller or significantly larger abundance not observed earlier.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ecological models have often been used in order to answer questions that are in the limelight of recent researches such as the possible effects of climate change. The methodology of tactical models is a very useful tool comparison to those complex models requiring relatively large set of input parameters. In this study, a theoretical strategic model (TEGM ) was adapted to the field data on the basis of a 24-year long monitoring database of phytoplankton in the Danube River at the station of G¨od, Hungary (at 1669 river kilometer – hereafter referred to as “rkm”). The Danubian Phytoplankton Growth Model (DPGM) is able to describe the seasonal dynamics of phytoplankton biomass (mg L−1) based on daily temperature, but takes the availability of light into consideration as well. In order to improve fitting, the 24-year long database was split in two parts in accordance with environmental sustainability. The period of 1979–1990 has a higher level of nutrient excess compared with that of the 1991–2002. The authors assume that, in the above-mentioned periods, phytoplankton responded to temperature in two different ways, thus two submodels were developed, DPGM-sA and DPGMsB. Observed and simulated data correlated quite well. Findings suggest that linear temperature rise brings drastic change to phytoplankton only in case of high nutrient load and it is mostly realized through the increase of yearly total biomass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge on the expected effects of climate change on aquatic ecosystems is defined by three ways. On the one hand, long-term observation in the field serves as a basis for the possible changes; on the other hand, the experimental approach may bring valuable pieces of information to the research field. The expected effects of climate change cannot be studied by empirical approach; rather mathematical models are useful tools for this purpose. Within this study, the main findings of field observations and their implications for future were summarized; moreover, the modelling approaches were discussed in a more detailed way. Some models try to describe the variation of physical parameters in a given aquatic habitat, thus our knowledge on their biota is confined to the findings based on our present observations. Others are destined for answering special issues related to the given water body. Complex ecosystem models are the keys of our better understanding of the possible effects of climate change. Basically, these models were not created for testing the influence of global warming, rather focused on the description of a complex system (e. g. a lake) involving environmental variables, nutrients. However, such models are capable of studying climatic changes as well by taking into consideration a large set of environmental variables. Mostly, the outputs are consistent with the assumptions based on the findings in the field. Since synthetized models are rather difficult to handle and require quite large series of data, the authors proposed a more simple modelling approach, which is capable of examining the effects of global warming. This approach includes weather dependent simulation modelling of the seasonal dynamics of aquatic organisms within a simplified framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present the composition, seasonal dynamics and fluctuations in diversity of the phytoplankton in the Danube River over 24 years. Weekly samplings were conducted at one section of the river at Göd, in the 1669 river kilometer segment. The change in the phytoplankton community structure was analyzed in relation of water temperature and discharge means. Our findings support the opinion that the Danube is very rich in species, although many of the species are rare and could be described only as coloring species. Results indicate trends in the phytoplankton abundance, which are only detectable in long-term studies. By the help of diversity indices we have observed an increase in the phytoplankton community diversity. With the relevant information, an explanation of the significant changes in diversity and richness was formed. Our goals were a construction of a solid database of the phytoplankton, examining the seasonal dynamics of the phytoplankton through a 24 year long study and to see the most important changing factors of the community. The results of this study are to assist and help future model developments to predict the phytoplankton seasonal dynamic patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The species composition, longitudinal distribution and seasonal dynamics of zooplankton were studied in the Zagyva River, Hungary. A total of 108 taxa was recorded from which 61 were new for the river. Rotatoria was the most abundant group, microcrustaceans were less important, only nauplii and copepodites were represented in similar individual numbers. Frequent species included Anuraeopsis fissa, Pompholyx spp., Keratella cochlearis, Brachionus angularis, Bdelloida sp., Bosmina longirostris. Dominance of cosmopolitan species was observed both in the river and its reservoir, and species characteristic of eutrophic waters were of major importance in the latter. There was a downstream decrease in zooplankton densities, which was explained by modified conditions. The relatively large number of individuals in autumn months, and the characteristic large number of individuals in the upper section contrasted general findings of potamoplankton dynamics. On the basis of the species abundance matrix, three river sections can be distinguished (upper, middle, lower section). Due to waste water discharges - received from the Tarján Stream - we found extremely high number of individuals and the lowest diversity at the sampling site Nagybátony (148 rkm).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial distribution and seasonal dynamics of the crustacean zooplankton were studied in the Danube River and in its side arms near Budapest, Hungary. Microcrustaceans were sampled biweekly from October 2006 to November 2007 at eleven sites. Thermocyclops crassus, Moina micrura and Bosmina longirostris added up to 57.6% of the total density. Comparisons of the different water bodies stressed the separation of the eupotamal and parapotamal side arms. Densities in the side arms were one respectively two orders of magnitude higher as compared to the main channel, which was relatively poor in plankton. There were remarkable longitudinal and transversal variations in the abundance of the major zooplankton groups (cladocerans, adult copepods, copepodites, nauplii) and dominant species (t-test, P < 0.05). However, no general pattern was observed, the spatial distribution depended on the examined objects. There were statistically significant seasonal differences in zooplankton abundance (Tukey-test, P < 0.05). Water residence time and water discharge were not found to be related to zooplankton abundance, but water temperature was positively correlated with microcrustacean density.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although numerous studies have focused on the seasonal dynamics of riverine zooplankton, little is known about its short-term variation. In order to examine the effects of sampling frequency and sampling effort, microcrustacean samples were collected at daily intervals between 13 June and 21 July of 2007 in a parapotamal side arm of the river Danube, Hungary. Samples were also taken at biweekly intervals from November 2006 to May 2008. After presenting the community dynamics, the effect of sampling effort was evaluated with two different methods; the minimal sample size was also estimated. We introduced a single index (potential dynamic information loss; to determine the potential loss of information when sampling frequency is reduced. The formula was calculated for the total abundance, densities of the dominant taxa, adult/larva ratios of copepods and for two different diversity measures. Results suggest that abundances may experience notable fluctuations even within 1 week, as do diversities and adult/larva ratios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the observation of more than 10 000 leaves of plane trees, four populations of Corythucha ciliata (Say, 1832) (Heteroptera: Tingidae) are investigated. After having introduced some parameters derived from the data, we draw spatial-temporal patterns and describe the seasonal population dynamics of Corythucha ciliata. Amongst others, the temporal change of the density of population, the state plane of larvae–adults, the inclination to accumulate, and the intraspecific competition are examined. Population and biomass dynamics is characterized for populations with and without limited nutrient source in case of different weather circumstances and effects.